FAIRCHILD

SEMICONDUCTOR

CD4066BC Quad Bilateral Switch

General Description

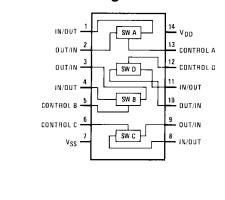
The CD4066BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4016BC, but has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.

Features

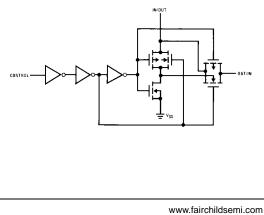
- Wide supply voltage range 3V to 15V
- High noise immunity 0.45 V_{DD} (typ.)
- Wide range of digital and ±7.5 V_{PEAK} analog switching
- \blacksquare "ON" resistance for 15V operation 80 Ω
- Matched "ON" resistance $\Delta R_{ON} = 5\Omega$ (typ.) over 15V signal input
- "ON" resistance flat over peak-to-peak signal range
- High "ON"/"OFF" 65 dB (typ.) output voltage ratio @ $f_{is} = 10 \text{ kHz}$, $R_L = 10 \text{ k}\Omega$
- Control Line Biasing: Switch On (Logic 1), $V_C = V_{DD}$ Switch Off (Logic 0), $V_C = V_{SS}$

November 1983 Revised October 2005

- $\label{eq:high_degree_linearity} \begin{array}{ll} \text{0.1\% distortion (typ.)} \\ \text{High degree linearity} & @ f_{is} = 1 \text{ kHz}, \ V_{is} = 5 V_{p\text{-}p}, \end{array}$
- High degree linearity $V_{DD}-V_{SS} = 10V$, $R_L = 10 k\Omega$ Extremely low "OFF" 0.1 nA (typ.)
- switch leakage: @ $V_{DD}-V_{SS} = 10V$, $T_A = 25^{\circ}C$
- Extremely high control input impedance $10^{12}\Omega(typ.)$
- Low crosstalk –50 dB (typ.)
- between switches @ $f_{is} = 0.9 \text{ MHz}$, $R_L = 1 \text{ k}\Omega$ Frequency response, switch "ON" 40 MHz (typ.)
- . . .


Applications

- Analog signal switching/multiplexing
 - Signal gating
 - Squelch control
 - Chopper
 - Modulator/Demodulator
 - Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal-gain


Ordering Code:

Order Number	Package Number	Package Description
CD4066BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4066BCSJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4066BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tape and Reel. Specify	/ by appending suffix letter "X" to the ordering code.

Connection Diagram

Schematic Diagram

© 2005 Fairchild Semiconductor Corporation DS005665

CD4066BC

Absolute Maximum Ratings (Note 1)

(Note 2)	
Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	–0.5V to V _{CC} +0.5V
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	300°C

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{DD})	3V to 15V
Input Voltage (V _{IN})	0V to V _{DD}
Operating Temperature Range (T _A)	-55°C to +125°C

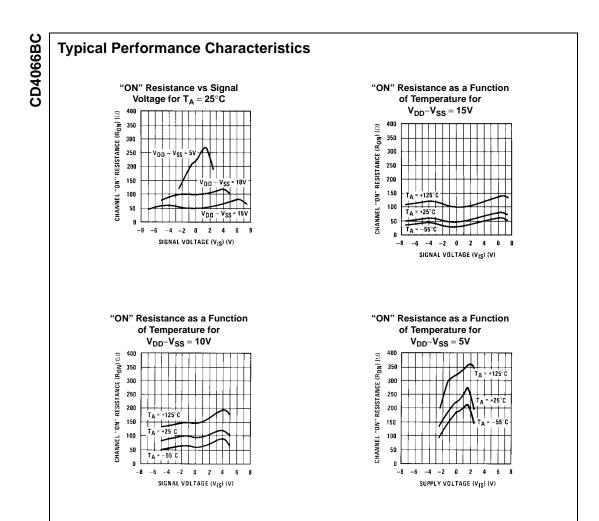
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	–55°C			+25°C		+125°C		Units
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		0.25		0.01	0.25		7.5	
		$V_{DD} = 10V$		0.5		0.01	0.5		15	μΑ
		$V_{DD} = 15V$		1.0		0.01	1.0		30	
SIGNAL	INPUTS AND OUTPUTS									
R _{ON}	"ON" Resistance	$R_L = 10 \text{ k}\Omega \text{ to } (V_{DD} - V_{SS}/2)$								
		$V_{C} = V_{DD}$, V_{SS} to V_{DD}								
		$V_{DD} = 5V$		800		270	1050		1300	
		$V_{DD} = 10V$		310		120	400		550	Ω
		$V_{DD} = 15V$		200		80	240		320	
ΔR_{ON}	∆"ON" Resistance Between	$R_L = 10 \text{ k}\Omega \text{ to } (V_{DD} - V_{SS}/2)$								
	Any 2 of 4 Switches	V_{CC} = V $_{DD}, ~V_{IS}$ = V_{SS} to V_{DD}								
		$V_{DD} = 10V$				10				Ω
		$V_{DD} = 15V$				5				52
I _{IS}	Input or Output Leakage	$V_{C} = 0$		±50		±0.1	±50		±500	nA
	Switch "OFF"									
CONTRO	OL INPUTS									
V _{ILC}	LOW Level Input	$V_{IS} = V_{SS}$ and V_{DD}								
	Voltage	V_{OS} = V $_{DD}$ and V_{SS}								
		$I_{IS}=\pm \ 10 \mu A$								
		$V_{DD} = 5V$		1.5		2.25	1.5		1.5	
		$V_{DD} = 10V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V$		4.0		6.75	4.0		4.0	
VIHC	HIGH Level Input	$V_{DD} = 5V$	3.5		3.5	2.75		3.5		
	Voltage	V _{DD} = 10V (Note 7)	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V$	11.0		11.0	8.25		11.0		
I _{IN}	Input Current	$V_{DD} - V_{SS} = 15V$		-0.1		-10 ⁻⁵	-0.1		-0.1	μA
		V _{DD} ≥V _{IS} ≥V _{SS}		0.1		10 ⁻⁵	0.1		0.1	μι
		V _{DD} ≥V _C ≥V _{SS}								

Symbol	C, $t_r = t_f = 20$ ns and $V_{SS} = 0V$ unle Parameter	Conditions	Min	Turn	Max	Units
	Parameter Propagation Delay Time Signal	$V_{\rm C} = V_{\rm DD}, C_{\rm I} = 50 \text{ pF}, (Figure 1)$	IVIIN	Тур	wax	Units
t _{PHL} , t _{PLH}	Input to Signal Output	$R_{\rm L} = 200 {\rm k}$				
	Input to Signal Output	$V_{DD} = 5V$		25	55	ns
		$V_{DD} = 3V$ $V_{DD} = 10V$		25 15	35	ns
		$V_{DD} = 15V$ $V_{DD} = 15V$		10	25	ns
tt	Propagation Delay Time	$R_{\rm I} = 1.0 \text{ k}\Omega, C_{\rm I} = 50 \text{ pF}, (Figure 2, Figure 3)$		10	23	115
t _{PZH} , t _{PZL}	Control Input to Signal	$V_{DD} = 5V$			125	ns
	Output High Impedance to	$V_{DD} = 3V$ $V_{DD} = 10V$			60	ns
	Logical Level	$V_{DD} = 15V$			50	ns
+ +	Propagation Delay Time	$V_{DD} = 1.5 V$ $R_{L} = 1.0 k\Omega, C_{L} = 50 \text{ pF}, \text{ (Figure 2, Figure 3)}$			50	115
t _{PHZ} , t _{PLZ}	Control Input to Signal	$V_{DD} = 5V$			125	ns
	Output Logical Level to	$V_{DD} = 3V$ $V_{DD} = 10V$			60	ns
	High Impedance	$V_{DD} = 15V$ $V_{DD} = 15V$			50	ns
	Sine Wave Distortion	$V_{DD} = 15V$ $V_{C} = V_{DD} = 5V, V_{SS} = -5V$		0.1	50	%
	Sine wave Distolition	$v_{\rm C} = v_{\rm DD} = 5v, v_{\rm SS} = -5v$ $R_{\rm I} = 10 \ k\Omega, V_{\rm IS} = 5V_{\rm p-p}, f = 1 \ \text{kHz}, (Figure 4)$		0.1		70
	Frequency Response-Switch	$V_{\rm C} = V_{\rm DD} = 5V, V_{\rm SS} = -5V,$		40		MHz
	"ON" (Frequency at -3 dB)	$v_{\rm C} = v_{\rm DD} = 3v, v_{\rm SS} = -3v,$ $R_{\rm I} = 1 \ k\Omega, V_{\rm IS} = 5V_{\rm n-D},$		40		IVITIZ
	ON (Frequency at -3 dB)	2 10 pp				
		20 Log ₁₀ V _{OS} /V _{OS} (1 kHz)–dB, (Figure 4)				
		(Figure 4)				
	Feedthrough — Switch "OFF"	$V_{DD} = 5.0V, V_{CC} = V_{SS} = -5.0V,$		1.25		
	(Frequency at -50 dB)	$R_{\rm L} = 1 \ k\Omega, \ V_{\rm IS} = 5.0V_{\rm p-p}, \ 20 \ {\rm Log}_{10},$		1.25		
	(i loquonoy at loo ab)	$V_{OS}/V_{IS} = -50 \text{ dB}, \text{ (Figure 4)}$				
	Crosstalk Between Any Two	$V_{DD} = V_{C(A)} = 5.0V; V_{SS} = V_{C(B)} = 5.0V,$		0.9		MHz
	Switches (Frequency at -50 dB)	$R_{L1} k\Omega, V_{IS(A)} = 5.0 V_{p-p}, 20 Log_{10},$		0.5		IVIT IZ
	Switches (Frequency at -50 db)	$V_{OS(B)}V_{IS(A)} = -50 \text{ dB (Figure 5)}$				
	Crosstalk; Control Input to	$V_{DD} = 10V, R_{L} = 10 \text{ k}\Omega, R_{IN} = 1.0 \text{ k}\Omega,$		150		m\/
	Signal Output	$V_{DD} = 10V$, $K_L = 10$ K22, $K_{IN} = 1.0$ K22, $V_{CC} = 10V$ Square Wave, $C_L = 50$ pF		150		mV _{p-p}
	olgnal output	(Figure 6) (Figure 6)				
	Maximum Control Input	$R_{I} = 1.0 \text{ k}\Omega, C_{I} = 50 \text{ pF}, (Figure 7)$				
	Maximum Control Input	$V_{OS(f)} = \frac{1}{2} V_{OS}(1.0 \text{ kHz})$				
		00(i) 00 i		6.0		MHz
		$V_{DD} = 5.0V$		6.0		
		$V_{DD} = 10V$		8.0 8.5		MHz MHz
<u> </u>	Signal Input Capacitanea	$V_{DD} = 15V$		8.5 8.0		pF
C _{IS}	Signal Input Capacitance	V _ 10V				•
C _{OS}	Signal Output Capacitance	$V_{DD} = 10V$		8.0		pF
C _{IOS}	Feedthrough Capacitance Control Input Capacitance	$V_{C} = 0V$		0.5 5.0	7.5	pF pF

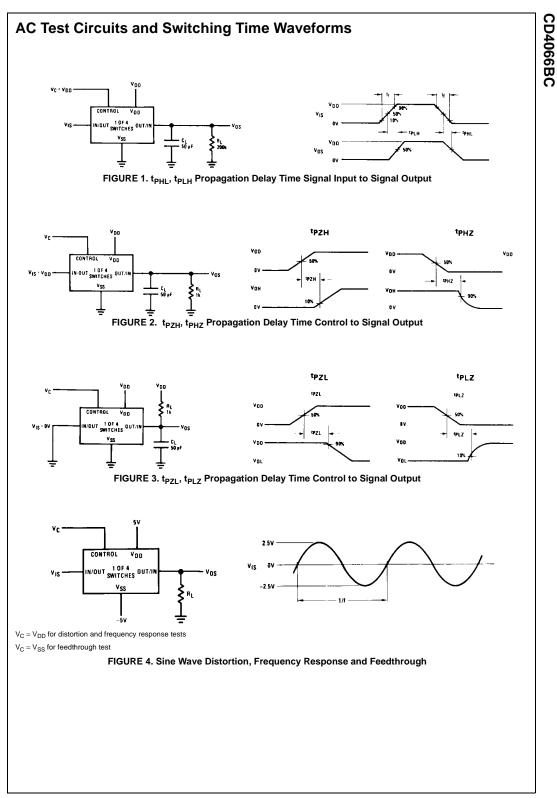

Note 3: AC Parameters are guaranteed by DC correlated testing.

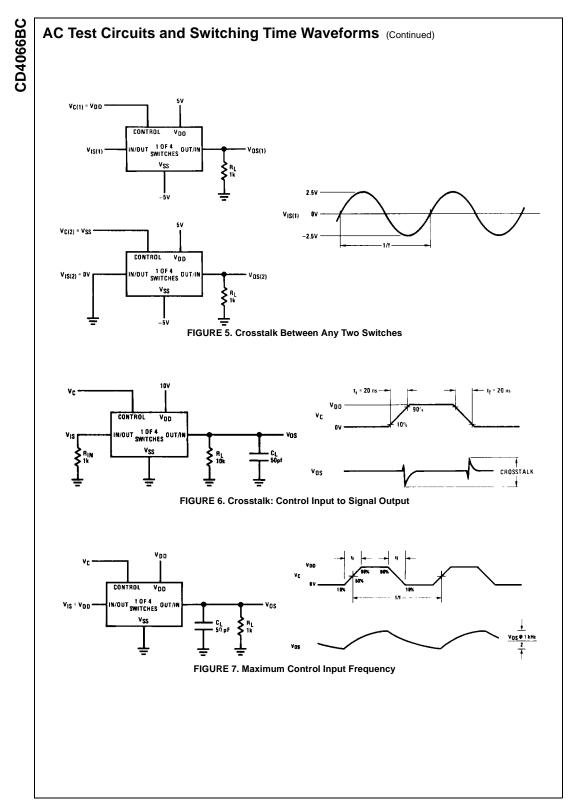
Note 4: These devices should not be connected to circuits with the power "ON".

Note 5: In all cases, there is approximately 5 pF of probe and jig capacitance in the output; however, this capacitance is included in C_L wherever it is specified.

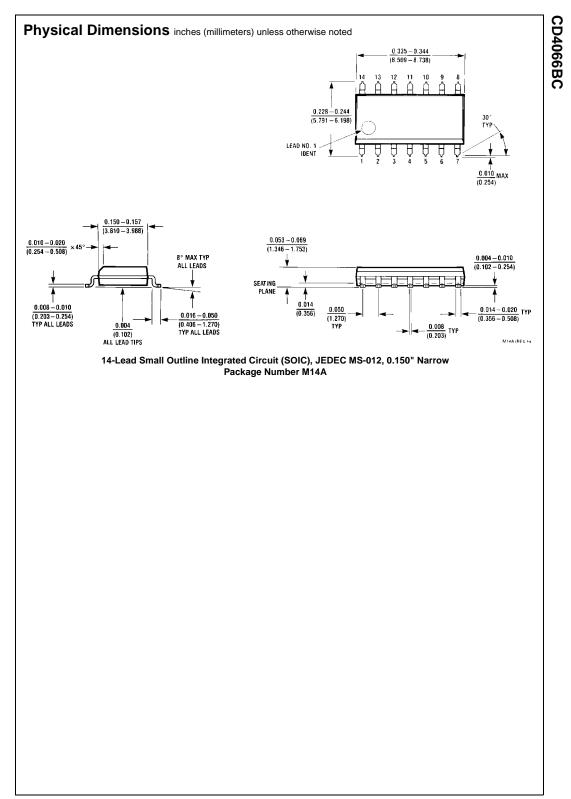
Note 6: V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_C is the voltage at the control input.

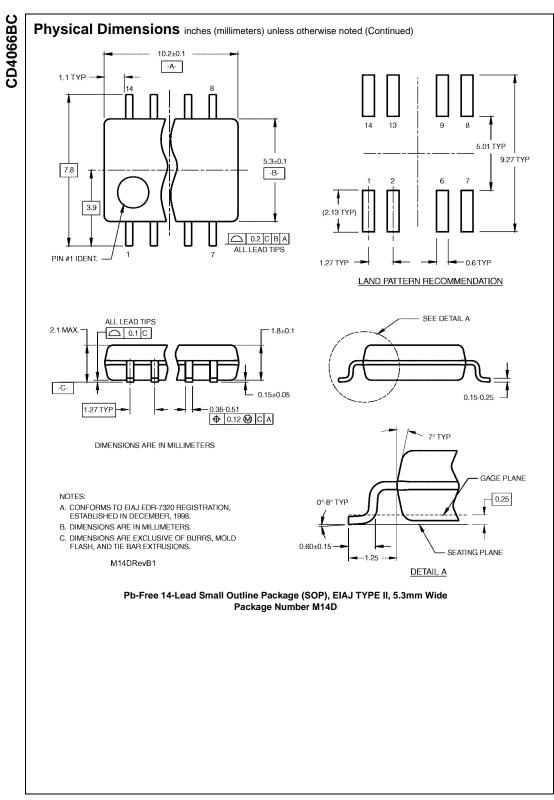
Note 7: Conditions for V_{IHC}: a) V_{IS} = V_{DD}, I_{OS} = standard B series I_{OH} b) V_{IS} = 0V, I_{OL} = standard B series I_{OL}.

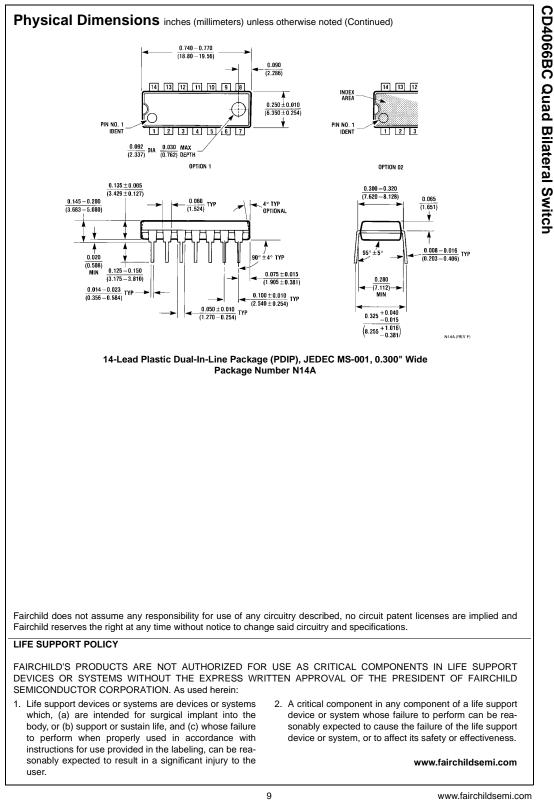



Special Considerations

In applications where separate power sources are used to drive V_{DD} and the signal input, the V_{DD} current capability should exceed V_{DD}/R_L (R_L = effective external load of the 4 CD4066BC bilateral switches). This provision avoids any permanent current flow or clamp action of the V_{DD} supply when power is applied or removed from CD4066BC.


In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To


avoid drawing V_{DD} current when switch current flows into terminals 1, 4, 8 or 11, the voltage drop across the bidirectional switch must not exceed 0.6V at T_A \leq 25°C, or 0.4V at T_A > 25°C (calculated from R_{ON} values shown). No V_{DD} current will flow through R_L if the switch current flows into terminals 2, 3, 9 or 10.



6

